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Testing for nonlinearity in unevenly sampled time series
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We generalize the method of surrogate data of testing for nonlinearity in time series to the case that the data
are sampled with uneven time intervals. The null hypothesis will be that the data have been generated by a
linear stochastic process, possibly rescaled, and sampled at times chosen independently from the generating
process. The surrogate data are generated with their linear properties specified by the Lomb periodogram. The
inversion problem is solved by combinatorial optimizatip81063-651X99)04004-Q

PACS numbds): 05.45-a

I. INTRODUCTION Il. SURROGATE DATA

The null hypothesis in this paper is that the data have
The vast majority of methods of time series analysis dealbeen generated by a linear stochastic process that is mea-
with data measured at times that are an integer multiple ofured instantaneously and possibly rescaled x{Et be the
the fixed sampling intervah. Unevenly sampled time series outcome of a linear stochastic process. The time s¢yigs
are often excluded although they are quite common in casds, according to the null hypothesis, generated by
where measurements are restricted by practical conditions.
For example, most astronomical observations cannot be
made in the daytime and must often be interrupted in the yo=Ff(x(ty)), n=1,...N (h)
night due to cloudy weather; data from the stock exchange
has gaps during the weekends and holidays, etc. The reason
for excluding such data is mainly technical: most methodsvheref(-) is a monotonic function. This excludes correla-
cannot be easily generalized to the unevenly sampled castons or even a deterministic relationship between the sam-
This is particularly true for nonlinear methods of time seriespling timest, and the observablg, .
analysis[1]. Generating surrogate data sets with the same linear prop-
For the nonlinear approach to analyzing a time series, werties as the original data amounts to the conservation of the
first have to ask for signatures of nonlinearity in the gener-autocorrelation function. But even simple things such as au-
ating process. In this paper for the first time we present docorrelations are hard to maintain for unevenly sampled
statistical test for nonlinearity in unevenly sampled time se-data. Any time interval can occur between successive points
ries by extending the common concept of surrogate (#ta and it is possible to combine them to nearly arbitrary lags.
where randomized data sets are used to obtain a Monte Carfdne idea is to calculate autocorrelations by binning all pos-
approximation to the probability distribution of a suitable sible intervals to the desired, discrete lags, a process that
test statistics. involves some nonlinearity. Using these autocorrelations for
In order to take a Monte Carlo approach to n0n|ine‘,ﬂitygenerat_ing surrogates can lead to the spurious rejection of
testing, we have to be able to generate sequences that dtdrely linear ime series. .
random except for their linear correlations. Any additional Standard surrogate methods make use of the Fourier

structure realized in these surrogate time series can lead {Bansformatmn to conserve the autocorrelations of the origi-

. " L ..~ nal data. The method admplitude adjusted Fourier trans-
spurious positive results of the statistical test. In certain S'tuformation (AAFT, [2)) rescales the original time series to a

atlotnsd, tt?e.p:oble:ntpf v?r:ylr;g ttmt'e mterv"aIs can %e C'rculr_n'Gaussian distribution first. Then, the Fourier phases are ran-
vented by interpolaling the dala to equally spaced sampling,yizeq and the Fourier transformation is inverted. Finally,

times. However, in a test for nonlinearity, one could then not, eqcaling to the original distribution is performed. A re-
distinguish between genuine structure and nonlinearity introined method has been suggested in R&fwhere an itera-
duced spuriously by the interpolation process. tion scheme is used to simultaneously conserve the spectrum
Besides the generation of surrogates, we have to be ablghd the distribution. It consists of alternating Fourier trans-
to measure the degree of nonlinearity in the data. In contragprmation and rescaling steps. Both methods cannot directly
to the process of generating surrogates, interpolations atge applied to unevenly sampled data, because they utilize the
permitted here as part of the specification of a test statistic. A ourier transformation and its inverse.
badly designed test statistic could in the worst case lower the In Ref.[4], a general approach to the constrained random-
discrimination power of the test, while still keeping it for- ization of time series is described that allows the specifica-
mally correct. In this paper we use a very simple test statistition of almost arbitrary properties. We will use this method
that measures nonlinearity through deviations from time reto implement the power spectrum without explicit use of the
versibility. The main emphasis is laid on the generation alinverse Fourier transform. Thus we may estimate the power
gorithm for the surrogates. spectrum by the Lomb periodogram.
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lll. LOMB PERIODOGRAM the maximum norm. We usg=1 throughout, which yields

the averaged absolute differenceRyj,,andP. This choice

notLgte{Zn}ugllle astlgnceeje_rllﬁse sacl)r\?vpe)lreg ztcfclrmﬁigatthgiege eis_ motivated by the fact that the power is already a squared
quatly sp ' P P uantity. As a further alternative, one could use the differ-

timated by the Lomb periodograf®]. This spectral estima- ences between the square roots or logarithm®,ofvhich

]Eg:n;ilgfscussed, €.g., in Reffe]. Here we give the final puts less stress on the peaks in the power spectrum than Eq.
) (4). Another freedom lies in the choice of the minimum fre-
_ 2 guencywq and the number of frequenci® and one may
[2 (Yn—Yy)sino(t,—7) have to consider different values for each individual applica-
P(w)=— n tion.
207 2 sir w(t,— 7) As in Ref.[4] we will look for the minima of this cost
= n function (4) among all permutations of the time serigs,}.

Combinatorial minimization by complete enumeration is not
S (y.—y)cosw(t,— 1) feasible here since the computational effort grows exponen-
L n tially with the length of the time series. Instead, we will use

+ (2)  the method of simulated annealifig,8] that is expected to

>, cof w(ty—17) find an approximate solution in polynomial time.
n

2

where 7 is defined by V. SIMULATED ANNEALING

The simulated annealing proceeds as follows. Starting
2 sin 2wt with a random permutation of the original time series, the
tan2w7) = n 3) surrogate is successively modified by exchanging two values
i andy; with i,j chosen at random. Let the cost function
> cos 2wt yi anclyj Wi 1.) ©ho '
= n before the modification bd,qy, and after the exchange
E.ew- The modification will be accepted if it yields a lower

andy,o? are the mean and the variance of the data, respe¢@lue for the cost function, or else with a probability

tively. The result can be derived by fitting a least squares

model y=a coswt+bsinet to the data for each given fre- p=exp(—AE/T), AE=Ejew Eoq- )
guencyw. Therefore, Lomb periodograms are often referred

to asleast squares periodogramBor time series sampled at Otherwise it will be rejected and a different pair is selected
constant time intervalsA =t,,—t,_, for all n, the Lomb pe- for modification. Using this updating scheme has been pro-
riodogramP(27n/NA) yields the standard squared Fourier posed by Metropoli®t al. [9] as a method to keep a model
transformation. Except for this particular case, there is nsystem in equilibrium at a given system temperaftiré-or
inverse transformation for the Lomb periodogram, whichminimization, the “temperature” is lowered slowly in order
makes it impossible to use the standard surrogate data algte reach the ground state that is given by the global minimum

rithms mentioned above. of E. For the present purpose we do not have to reach the
proper global minimum. A state with a small but finEewill
IV. GENERAL CONSTRAINED RANDOMIZATION be sufficient.

Simulated annealing has a rich literature that will not be
In order to avoid inverting the Fourier transform, we fol- reviewed here. An introduction can be found, for example, in
low the general approach of R¢#], where desired proper- [10]. Although some rigorous convergence results are avail-
ties on the surrogates are formulated by constraints. Thesgle, in a given application it is very difficult in general to
constraints are implemented as a cost functf{y.})  give an optimal scheme of loweririg Here we use a cooling
which is constructed to have a global minimum if the con-scheme as proposed for examp|e[@j_ The temperature is
straint is fulfilled. In our case, the constraint is given by the|owered by a constant facter<1 to T after Nyog cONsid-
Lomb periodogrant2) of the data. This can for example be ered modifications or aftéM ;< Ny accepted updates. The
expressed as a cost function by parameteri\., andN .. are chosen to be proportional kb
N 1/ Bhy usinglg_ higher \:)alues gor trlle parag?etehgtah I\II_aco z_;\nda, |
_ _ the cooling can be made slower. Slower cooling in genera

E= kzl [P(kepo) = Paad keoo)|| @ yields lower final values ofE, i.e., higher accuracy of the
periodogram, at the expense of computational time.
which is the discrepancy between the desired Lomb peri- Two improvements that accelerate the annealing algo-
odogram Py, Of the original data and the actual peri- rithm have been made. The first is to choose the two points
odogramP of the surrogate. We calculat at N; equally  that are candidates for an exchange with a probability that
spaced frequencidsyg, but other choices are possible. With depends on their difference in magnitude, respectively, in
the parameter one can specify the distance measure betank. Let ranky;) be the position ofy; in the sorted array,
tween the two periodograms. Fgr=2, the L? distance is going from 1 for the smallest tNl for the largest value of the
used. Higher “penalties” for large differences in single fre- time series. Exchanging two points with a big difference in
guencies could be given by raisiggabove two. For the case their rank(e.g., the smallest and the largest valgenerally
g—c only the largest difference contributesiand we get yields a larger change of the cost functiérthan exchanging
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FIG. 1. CPU time used to generate one surrogate of leNgth FIG. 2. Delay plot of an unevenly sampled g map(left)
Time is given for a DEC alpha work station at 166 MHap) and  and one surrogat&ight). The test finds a significant difference in
a Pentium Linux PC at 450 MHgottom). The solid line iseNZ. time asymmetry.

two points that do not differ much in their ranks. For goodto start with a completely random permutation of the original
performance, it is desired to keep approximately the saméme series for each surrogate. The starting temperature can
acceptance rate through all temperatures. This can b@ughly be determined by calculating the cost function for
achieved by choosing pairs of poinftg; ,y;} with i#j and  some randomly shuffled data sets and choodiggas the
probability pj; (d, ) whered=|rank(y;) —rank(y;)| —1. The  average difference in cost between them. Once an adequate
probability p is chosen to have a maximum fde=0 and to  starting temperature is known, it can be used for further sur-
decrease for highed. The parametep characterizes the rogates.
“width” of the distribution p and should be varied propor-
tional toN/T. The exact shape qf does not seem to be of VI. TEST STATISTICS
much importance. For example, we were not able to observe
a significant difference in performance between exponential So far, we have described how to produce randomized
and Gaussian distributions. But in all cases we considered, ¢ersions of unevenly sampled time series with given linear
nonuniformp;; of width «<N/T substantially accelerated the correlations, which is the main point of this paper. Let us
annealing process, so that higher accuracy is reachable wittow demonstrate how such surrogate sequences can be used
the same computational effort. in tests for nonlinearity. For this purpose, we have to be able
CalculatingE is very time consuming for long time series to measure the degree of nonlinearity in a time series. Many
and many frequencies. With a typical value Nf<N we  statistics that have proven useful for evenly sampled time
have an algorithm of ordeX? for each annealing step. Ad- series(see, e.g.[11]) cannot easily be generalized to un-
ditionally, the number of annealing steps is expected to grov@venly spaced data. This generalization, in general, is a topic
at least linearly withN. For our applications, it is not neces- of future research.
sary to recalculate all sums in E(R) for every exchange, Here, as a first simple statistic, we choose a measure for
because we only change the valygswhile fixing the times  time reversibility, which is a good indicator for nonlinearity.
t, and frequencie&w,. In Eq. (2), 7 and the two denomi- It is however not very enlightening about what source of
nators do not depend oy}, and can be stored in arrays for nonlinearity there might be. For the data sorted in time order,
every frequenckw, at the beginning of the annealing pro- N
cess. The sums in the numerator do not change much either _ 1 Yn=Yn-1|°
and only the two terms that correspond to pair to exchange Y= (02)32(N—1) i=2
{yi.y;} have to be subtracted, recalculated and added again.

This reduces the effort for the update of the Lomb peri-is calculated, which is just the mean of the slopes, taken to
odogram to ordeN; . the third power. For a time series generated by a linear pro-
But even with the described modifications to the algo-cess, and for the surrogates, we expget0. In contrast,
rithm, annealing is quite computer time intensive. The CPUime series with nonlinearities can be asymmetrical in time

time used to generate one surrogate is shown in Fig. 1 foand may yield values of#0. To pay regard to deviations in

subsets of different lengths of time seriesE (see example hoth directions ¢>0 andy<0), atwo-sidedest[12] has to

below. We calculated the Lomb periodogram ldf=N/2  pe performed.

frequencies and useg=1 in the cost function. As indicated

b;; the soljd Iine the whole algorithm is found to be .of o_rder VII. EXAMPLES

N<. Considering that the update of the cost function is of

orderN, the annealing scheme itself seems to be of ohdler To test the functionality of the surrogate test, we use

In any case, this is much faster than complete enumaratioh0 000 points of the Heon map as a first example. From

with an order exponential if. these, we pich=1000 points with their time indices chosen
For the calculation of surrogates, simulated annealing isandomly. To generate surrogates, we calculate the Lomb

performed untilE has fallen below a given valug;, the periodogram forN;=500 frequencies in the intervab

desired accuracy of the Lomb periodogram. In Monte Carloe[0,0.5. A delay plot of the data and one surrogate is

simulations of physical systems new configurations are usushown in Fig. 2. A little trace of the H®n attractor can be

ally derived from previous configurations. In order to avoidfound in the left figure that is built by pairs of values with

any correlations between the different surrogates, we prefdime delay one. For the original time series we get

(6)

tn_tnfl
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FIG. 3. Lomb periodogram of data sBt See text for details. FIG. 4. The down-sampled data detwith one corresponding

surrogate. Gaps of different sizes prevent reasonable interpolation.

vy=-0.58, while 19 surrogates gave valuesered time series does not lie outside the interval[ —13
—0.30< y<0.18. This corresponds to a 90% level of signifi- X107 s73, 29x10 7 s3] spanned surrogates, and thus
cance for the time series not being time reversible and hendie null hypothesis cannot be rejected. One surrogate time
nonlinear in the sense of the null hypothesis. series is also shown in Fig. 4.

In order to verify the new test method we also applied the Spurious high-frequency components could be introduced

test to linear time series based on an (ARprocessx,,,; Py discrepancies in the overlapping parts of the recording.
= 0.95,,+ 7, which is, however, invertibly rescaled by, 10 deal with that problem we deleted points from one of the

=x,X,. Again we picked 1000 points randomly from the two parts and repeated the test. No significant differences in

original 10 000. A test performed with this data was unablethe surrogates and its values for the test statistics were ob-

: . : erved.
:?ureeject the null hypothesis, as expected since the null wa3 Taking a closer look at the individual parts shows consid-

F tificati f th d the sfa¢] of th erable differences in their autocorrelations, which makes it
or a quanuincation of the power and the s orthe dangerous to consider the whole data set as stationary. In

new method, many independent tests would be necessar%‘ontrast, the generated surrogates are stationary by construc-

Such an extremely computer time-intensive study is beyongon |t one could detect significant differences with a non-

the scope of the present work. _ linear statistic, nonstationarity would be an equally likely
Finally, the test is applied to experimental data. DatéEset explanation as nonlinearity.

of the Santa Fe time series contest is a set of measurements

of the time-integrated intensity of light observed from a vari- VIIl. SUMMARY
able star. It consists of 17 parts with different numbers of . .
points, the time range of which partly overlaps and partly In this paper we presented a method for a test for nonlin-

shows gaps. Inside the blocks, the data is evenly sample%arity for time series with uneven time intervals. Such a test
) i consists of two main steps: generating surrogate data and

with A=10 s. Special interest in low frequency components ‘ - . .
makes it desirable to consider the time series as a whole. T Icu_latlng test statistics. The new method is _able_ to achieve
e first step using the constrained randomization scheme

Lomb periodogram of the data set is shown in Fig. 3. Broposed in Ref[4]. We offered only a first attempt on the

For the surrogate test we further down-sampled the dat d probl M ful test statisti likelv 1o b
by integrating over 12 successive measurements. Therefor econd problem. viore poweriul test Stauistics are fikely {o be
érivable from current nonlinear time series methods.

surrogates could be generated in reasonable time. The result:
ing time series iN=2260 points long wittA=120 s ex-

cept for nine gaps taking up to 10000 s, as shown in Fig. 4. We would like to thank Daniel Kaplan, James Theiler,
The Lomb periodogram is calculated ldt=1130 frequen- Peter Grassberger, and Holger Kantz for useful discussions.
cies with up tov,,,=1/240 Hz. The value for the time- This work was supported by the SFB 237 of the Deutsche
reversibility statisticy=—0.56x10"" s 3 of the consid- Forschungsgemeinschaft.
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