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Testing for nonlinearity in unevenly sampled time series

Andreas Schmitz and Thomas Schreiber
Physics Department, University of Wuppertal, D-42097 Wuppertal, Germany

~Received 28 April 1998; revised manuscript received 9 December 1998!

We generalize the method of surrogate data of testing for nonlinearity in time series to the case that the data
are sampled with uneven time intervals. The null hypothesis will be that the data have been generated by a
linear stochastic process, possibly rescaled, and sampled at times chosen independently from the generating
process. The surrogate data are generated with their linear properties specified by the Lomb periodogram. The
inversion problem is solved by combinatorial optimization.@S1063-651X~99!04004-0#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The vast majority of methods of time series analysis de
with data measured at times that are an integer multiple
the fixed sampling intervalD. Unevenly sampled time serie
are often excluded although they are quite common in ca
where measurements are restricted by practical conditi
For example, most astronomical observations cannot
made in the daytime and must often be interrupted in
night due to cloudy weather; data from the stock excha
has gaps during the weekends and holidays, etc. The re
for excluding such data is mainly technical: most metho
cannot be easily generalized to the unevenly sampled c
This is particularly true for nonlinear methods of time ser
analysis@1#.

For the nonlinear approach to analyzing a time series,
first have to ask for signatures of nonlinearity in the gen
ating process. In this paper for the first time we presen
statistical test for nonlinearity in unevenly sampled time
ries by extending the common concept of surrogate data@2#,
where randomized data sets are used to obtain a Monte C
approximation to the probability distribution of a suitab
test statistics.

In order to take a Monte Carlo approach to nonlinear
testing, we have to be able to generate sequences tha
random except for their linear correlations. Any addition
structure realized in these surrogate time series can lea
spurious positive results of the statistical test. In certain s
ations, the problem of varying time intervals can be circu
vented by interpolating the data to equally spaced samp
times. However, in a test for nonlinearity, one could then
distinguish between genuine structure and nonlinearity in
duced spuriously by the interpolation process.

Besides the generation of surrogates, we have to be
to measure the degree of nonlinearity in the data. In cont
to the process of generating surrogates, interpolations
permitted here as part of the specification of a test statisti
badly designed test statistic could in the worst case lower
discrimination power of the test, while still keeping it fo
mally correct. In this paper we use a very simple test stati
that measures nonlinearity through deviations from time
versibility. The main emphasis is laid on the generation
gorithm for the surrogates.
PRE 591063-651X/99/59~4!/4044~4!/$15.00
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II. SURROGATE DATA

The null hypothesis in this paper is that the data ha
been generated by a linear stochastic process that is m
sured instantaneously and possibly rescaled. Letx(t) be the
outcome of a linear stochastic process. The time series$yn%
is, according to the null hypothesis, generated by

yn5 f „x~ tn!…, n51, . . . ,N ~1!

where f (•) is a monotonic function. This excludes correl
tions or even a deterministic relationship between the s
pling timestn and the observableyn .

Generating surrogate data sets with the same linear p
erties as the original data amounts to the conservation of
autocorrelation function. But even simple things such as
tocorrelations are hard to maintain for unevenly samp
data. Any time interval can occur between successive po
and it is possible to combine them to nearly arbitrary la
One idea is to calculate autocorrelations by binning all p
sible intervals to the desired, discrete lags, a process
involves some nonlinearity. Using these autocorrelations
generating surrogates can lead to the spurious rejectio
purely linear time series.

Standard surrogate methods make use of the Fou
transformation to conserve the autocorrelations of the or
nal data. The method ofamplitude adjusted Fourier trans
formation ~AAFT, @2#! rescales the original time series to
Gaussian distribution first. Then, the Fourier phases are
domized and the Fourier transformation is inverted. Fina
a rescaling to the original distribution is performed. A r
fined method has been suggested in Ref.@3# where an itera-
tion scheme is used to simultaneously conserve the spec
and the distribution. It consists of alternating Fourier tran
formation and rescaling steps. Both methods cannot dire
be applied to unevenly sampled data, because they utilize
Fourier transformation and its inverse.

In Ref. @4#, a general approach to the constrained rando
ization of time series is described that allows the specifi
tion of almost arbitrary properties. We will use this meth
to implement the power spectrum without explicit use of t
inverse Fourier transform. Thus we may estimate the po
spectrum by the Lomb periodogram.
4044 ©1999 The American Physical Society
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III. LOMB PERIODOGRAM

Let $yn% be a time series sampled at times$tn% that need
not be equally spaced. The power spectrum can then be
timated by the Lomb periodogram@5#. This spectral estima
tor is discussed, e.g., in Ref.@6#. Here we give the final
formula:

P~v!5
1

2s2H F(
n

~yn2 ȳ!sinv~ tn2t!G2

(
n

sin2 v~ tn2t!

1

F(
n

~yn2 ȳ!cosv~ tn2t!G2

(
n

cos2 v~ tn2t!
J ~2!

wheret is defined by

tan~2vt!5

(
n

sin 2vtn

(
n

cos 2vtn

~3!

and ȳ,s2 are the mean and the variance of the data, resp
tively. The result can be derived by fitting a least squa
model y5a cosvt1bsinvt to the data for each given fre
quencyv. Therefore, Lomb periodograms are often referr
to asleast squares periodograms. For time series sampled a
constant time intervals,D5tn2tn21 for all n, the Lomb pe-
riodogramP(2pn/ND) yields the standard squared Fouri
transformation. Except for this particular case, there is
inverse transformation for the Lomb periodogram, whi
makes it impossible to use the standard surrogate data a
rithms mentioned above.

IV. GENERAL CONSTRAINED RANDOMIZATION

In order to avoid inverting the Fourier transform, we fo
low the general approach of Ref.@4#, where desired proper
ties on the surrogates are formulated by constraints. Th
constraints are implemented as a cost functionE($yn%)
which is constructed to have a global minimum if the co
straint is fulfilled. In our case, the constraint is given by t
Lomb periodogram~2! of the data. This can for example b
expressed as a cost function by

E5F (
k51

Nf

uP~kv0!2Pdata~kv0!uqG1/q

, ~4!

which is the discrepancy between the desired Lomb p
odogram Pdata of the original data and the actual per
odogramP of the surrogate. We calculateP at Nf equally
spaced frequencieskv0 , but other choices are possible. Wi
the parameterq one can specify the distance measure
tween the two periodograms. Forq52, the L2 distance is
used. Higher ‘‘penalties’’ for large differences in single fr
quencies could be given by raisingq above two. For the cas
q→` only the largest difference contributes toE and we get
es-

c-
s

d

o

o-

se

-

i-

-

the maximum norm. We useq51 throughout, which yields
the averaged absolute difference ofPdata andP. This choice
is motivated by the fact that the power is already a squa
quantity. As a further alternative, one could use the diff
ences between the square roots or logarithms ofP, which
puts less stress on the peaks in the power spectrum than
~4!. Another freedom lies in the choice of the minimum fr
quencyv0 and the number of frequenciesNf and one may
have to consider different values for each individual appli
tion.

As in Ref. @4# we will look for the minima of this cost
function ~4! among all permutations of the time series$yn%.
Combinatorial minimization by complete enumeration is n
feasible here since the computational effort grows expon
tially with the length of the time series. Instead, we will u
the method of simulated annealing@7,8# that is expected to
find an approximate solution in polynomial time.

V. SIMULATED ANNEALING

The simulated annealing proceeds as follows. Start
with a random permutation of the original time series, t
surrogate is successively modified by exchanging two val
yi and yj with i , j chosen at random. Let the cost functio
before the modification beEold , and after the exchang
Enew. The modification will be accepted if it yields a lowe
value for the cost function, or else with a probability

p5exp~2DE/T!, DE5Enew2Eold . ~5!

Otherwise it will be rejected and a different pair is select
for modification. Using this updating scheme has been p
posed by Metropoliset al. @9# as a method to keep a mod
system in equilibrium at a given system temperatureT. For
minimization, the ‘‘temperature’’ is lowered slowly in orde
to reach the ground state that is given by the global minim
of E. For the present purpose we do not have to reach
proper global minimum. A state with a small but finiteE will
be sufficient.

Simulated annealing has a rich literature that will not
reviewed here. An introduction can be found, for example
@10#. Although some rigorous convergence results are av
able, in a given application it is very difficult in general t
give an optimal scheme of loweringT. Here we use a cooling
scheme as proposed for example in@6#. The temperature is
lowered by a constant factora,1 to aT after Ntotal consid-
ered modifications or afterNacc,Ntotal accepted updates. Th
parametersNtotal andNaccare chosen to be proportional toN.
By using higher values for the parametersNtotal, Nacc, anda,
the cooling can be made slower. Slower cooling in gene
yields lower final values ofE, i.e., higher accuracy of the
periodogram, at the expense of computational time.

Two improvements that accelerate the annealing al
rithm have been made. The first is to choose the two po
that are candidates for an exchange with a probability t
depends on their difference in magnitude, respectively,
rank. Let rank(yi) be the position ofyi in the sorted array,
going from 1 for the smallest toN for the largest value of the
time series. Exchanging two points with a big difference
their rank~e.g., the smallest and the largest value! generally
yields a larger change of the cost functionE than exchanging
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two points that do not differ much in their ranks. For go
performance, it is desired to keep approximately the sa
acceptance rate through all temperatures. This can
achieved by choosing pairs of points$yi ,yj% with iÞ j and
probabilitypi j (d,m) whered5urank(yi)2rank(yj )u21. The
probability p is chosen to have a maximum ford50 and to
decrease for higherd. The parameterm characterizes the
‘‘width’’ of the distribution p and should be varied propor
tional to N/T. The exact shape ofp does not seem to be o
much importance. For example, we were not able to obse
a significant difference in performance between exponen
and Gaussian distributions. But in all cases we considere
nonuniformpi j of width }N/T substantially accelerated th
annealing process, so that higher accuracy is reachable
the same computational effort.

CalculatingE is very time consuming for long time serie
and many frequencies. With a typical value ofNf}N we
have an algorithm of orderN2 for each annealing step. Ad
ditionally, the number of annealing steps is expected to g
at least linearly withN. For our applications, it is not neces
sary to recalculate all sums in Eq.~2! for every exchange
because we only change the valuesyn while fixing the times
tn and frequencieskv0 . In Eq. ~2!, t and the two denomi-
nators do not depend onyn and can be stored in arrays fo
every frequencykv0 at the beginning of the annealing pro
cess. The sums in the numerator do not change much e
and only the two terms that correspond to pair to excha
$yi ,yj% have to be subtracted, recalculated and added ag
This reduces the effort for the update of the Lomb pe
odogram to orderNf .

But even with the described modifications to the alg
rithm, annealing is quite computer time intensive. The C
time used to generate one surrogate is shown in Fig. 1
subsets of different lengthsN of time seriesE ~see example
below!. We calculated the Lomb periodogram atNf5N/2
frequencies and usedq51 in the cost function. As indicated
by the solid line the whole algorithm is found to be of ord
N2. Considering that the update of the cost function is
orderN, the annealing scheme itself seems to be of ordeN.
In any case, this is much faster than complete enumara
with an order exponential inN.

For the calculation of surrogates, simulated annealing
performed untilE has fallen below a given valueEf , the
desired accuracy of the Lomb periodogram. In Monte Ca
simulations of physical systems new configurations are u
ally derived from previous configurations. In order to avo
any correlations between the different surrogates, we pr

FIG. 1. CPU time used to generate one surrogate of lengthN.
Time is given for a DEC alpha work station at 166 MHz~top! and
a Pentium Linux PC at 450 MHz~bottom!. The solid line is}N2.
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to start with a completely random permutation of the origin
time series for each surrogate. The starting temperature
roughly be determined by calculating the cost function
some randomly shuffled data sets and choosingT0 as the
average difference in cost between them. Once an adeq
starting temperature is known, it can be used for further s
rogates.

VI. TEST STATISTICS

So far, we have described how to produce randomi
versions of unevenly sampled time series with given lin
correlations, which is the main point of this paper. Let
now demonstrate how such surrogate sequences can be
in tests for nonlinearity. For this purpose, we have to be a
to measure the degree of nonlinearity in a time series. M
statistics that have proven useful for evenly sampled ti
series~see, e.g.,@11#! cannot easily be generalized to u
evenly spaced data. This generalization, in general, is a t
of future research.

Here, as a first simple statistic, we choose a measure
time reversibility, which is a good indicator for nonlinearit
It is however not very enlightening about what source
nonlinearity there might be. For the data sorted in time ord

g5
1

~s2!3/2~N21!
(
n52

N S yn2yn21

tn2tn21
D 3

~6!

is calculated, which is just the mean of the slopes, taken
the third power. For a time series generated by a linear p
cess, and for the surrogates, we expectg'0. In contrast,
time series with nonlinearities can be asymmetrical in ti
and may yield values ofgÞ0. To pay regard to deviations in
both directions (g.0 andg,0), atwo-sidedtest@12# has to
be performed.

VII. EXAMPLES

To test the functionality of the surrogate test, we u
10 000 points of the He´non map as a first example. From
these, we pickN51000 points with their time indices chose
randomly. To generate surrogates, we calculate the Lo
periodogram for Nf5500 frequencies in the intervaln
P@0,0.5#. A delay plot of the data and one surrogate
shown in Fig. 2. A little trace of the He´non attractor can be
found in the left figure that is built by pairs of values wit
time delay one. For the original time series we g

FIG. 2. Delay plot of an unevenly sampled He´non map~left!
and one surrogate~right!. The test finds a significant difference i
time asymmetry.
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g520.58, while 19 surrogates gave valu
20.30,g,0.18. This corresponds to a 90% level of signi
cance for the time series not being time reversible and he
nonlinear in the sense of the null hypothesis.

In order to verify the new test method we also applied
test to linear time series based on an AR~1! processxn11
50.95xn1hn which is, however, invertibly rescaled byyn

5xnAxn. Again we picked 1000 points randomly from th
original 10 000. A test performed with this data was una
to reject the null hypothesis, as expected since the null
true.

For a quantification of the power and the size@12# of the
new method, many independent tests would be neces
Such an extremely computer time-intensive study is bey
the scope of the present work.

Finally, the test is applied to experimental data. Data seE
of the Santa Fe time series contest is a set of measurem
of the time-integrated intensity of light observed from a va
able star. It consists of 17 parts with different numbers
points, the time range of which partly overlaps and par
shows gaps. Inside the blocks, the data is evenly sam
with D510 s. Special interest in low frequency compone
makes it desirable to consider the time series as a whole.
Lomb periodogram of the data set is shown in Fig. 3.

For the surrogate test we further down-sampled the d
by integrating over 12 successive measurements. There
surrogates could be generated in reasonable time. The re
ing time series isN52260 points long withD5120 s ex-
cept for nine gaps taking up to 10 000 s, as shown in Fig
The Lomb periodogram is calculated atNf51130 frequen-
cies with up tonmax51/240 Hz. The value for the time
reversibility statisticg520.5631027 s23 of the consid-

FIG. 3. Lomb periodogram of data setE. See text for details.
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ered time series does not lie outside the intervalgP@213
31027 s23, 2931027 s23# spanned surrogates, and th
the null hypothesis cannot be rejected. One surrogate t
series is also shown in Fig. 4.

Spurious high-frequency components could be introdu
by discrepancies in the overlapping parts of the recordi
To deal with that problem we deleted points from one of t
two parts and repeated the test. No significant difference
the surrogates and its values for the test statistics were
served.

Taking a closer look at the individual parts shows cons
erable differences in their autocorrelations, which make
dangerous to consider the whole data set as stationary
contrast, the generated surrogates are stationary by cons
tion. If one could detect significant differences with a no
linear statistic, nonstationarity would be an equally like
explanation as nonlinearity.

VIII. SUMMARY

In this paper we presented a method for a test for non
earity for time series with uneven time intervals. Such a t
consists of two main steps: generating surrogate data
calculating test statistics. The new method is able to achi
the first step using the constrained randomization sche
proposed in Ref.@4#. We offered only a first attempt on th
second problem. More powerful test statistics are likely to
derivable from current nonlinear time series methods.

We would like to thank Daniel Kaplan, James Theile
Peter Grassberger, and Holger Kantz for useful discussi
This work was supported by the SFB 237 of the Deutsc
Forschungsgemeinschaft.

FIG. 4. The down-sampled data setE with one corresponding
surrogate. Gaps of different sizes prevent reasonable interpola
d
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